Conceptos Computadora

Friday, September 29, 2006

Paginas Exelentes Para Conocer el Hardware de la Computadora

Componentes de una Computadora Que no son Hardware y Por que
Informacion

En sentido general, la información es un conjunto organizado de datos, que constituyen un mensaje sobre un determinado ente o fenómeno. De esta manera, si por ejemplo organizamos datos sobre un país (número de habitantes, densidad de población, nombre del presidente, etc.) y escribimos por ejemplo, el capítulo de un libro, podemos decir que ese capítulo constituye información sobre ese país. Cuando tenemos que resolver un determinado problema o tenemos que tomar una decisión, empleamos diversas fuentes de información (como podría ser el capítulo mencionado de este imaginario libro), y construimos lo que en general se denomina conocimiento o información organizada que permite la resolución de problemas o la toma de decisiones (ver apartado sobre conocimiento).
Según otro punto de vista, la información es un fenómeno que proporciona significado o sentido a las cosas, e indica mediante códigos y conjuntos de datos, los modelos del pensamiento humano. La información por tanto, procesa y genera el conocimiento humano. Aunque muchos seres vivos se comunican transmitiendo información para su supervivencia, la superioridad de los seres humanos radica en su capacidad de generar y perfeccionar tanto códigos como símbolos con significados que conformaron lenguajes comunes útiles para la convivencia en sociedad, a partir del establecimiento de sistemas de señales y lenguajes para la comunicación.
Los datos se perciben mediante los sentidos, estos los integran y generan la información necesaria para producir el conocimiento que es el que finalmente permite tomar decisiones para realizar las acciones cotidianas que aseguran la existencia social. La sabiduría consiste en juzgar correctamente cuando, cómo, donde y con qué objetivo emplear conocimiento adquirido.
El ser humano ha logrado simbolizar los datos en forma representativa (lenguaje) para posibilitar el conocimiento de algo concreto y creó las formas de almacenar y utilizar el conocimiento representado.
Existe una relación indisoluble entre los datos, la información, el conocimiento, el pensamiento y el lenguaje, por lo que una mejor comprensión de los conceptos sobre información redundará en un aumento del conocimiento, ampliando así las posibilidades del pensamiento humano, que también emplea el lenguaje -oral, escrito, gesticular, etc.-, y un sistema de señales y símbolos interrelacionados.
Por que?
La informacion no es software ni hardware pero se encuentra dentro la computadora.

Hardware

Se denomina hardware o soporte físico al conjunto de elementos materiales que componen un computador. Hardware también son los componentes físicos de una computadora tales como el disco duro, dispositivo de CD-Rom, disquetera, etc.. En dicho conjunto se incluyen los dispositivos electrónicos y electromecánicos, circuitos, cables, tarjetas, armarios o cajas, periféricos de todo tipo y otros elementos físicos.
El hardware se refiere a todos los componentes físicos (que se pueden tocar) de la computadora: discos, unidades de disco, monitor, teclado, ratón, impresora, placas, chips y demás periféricos. En cambio, el software es intangible, existe como ideas, conceptos, símbolos, pero no tiene sustancia. Una buena metáfora sería un libro: las páginas y la tinta son el hardware, mientras que las palabras, oraciones, párrafos y el significado del texto son el software. Una computadora sin software sería tan inútil como un libro con páginas en blanco.
[editar]

Clasificación de hardware
Se clasifica generalmente en básico y complementario.
Entendiendo por básico todo aquel dispositivo necesario para iniciar el ordenador, y el complementario como su nombre lo dice sirve para realizar funciones específicas o más allá de las básicas. El hardware básico en los ordenadores son generalmente 4: monitor, CPU, ratón, teclado. El hardware complementario en los ordenadores son cualquiera que no se incluya en los anteriores como son: impresora, cámara de vídeo digital, escáner,etc... Es decir, es toda la computadora.
[editar]

Tipos de hardware
Periféricos de entrada Son los que permiten al usuario introducir instrucciones o datos a la computadora.
Periféricos de salida: Son los que muestran al usuario el resultado de las operaciones realizadas por el ordenador o Computadora.
Perifericos de Entrada/Salida Son los dispositivos que pueden aportar simultáneamente información exterior al PC y al usuari Aquí se encuentran: módem (Modulador/Demodulador), disquete, ZIP, CD-ROM, DVD-ROM, Disco Duro, Memoria USB , disco duro externo, memorias de pequeño tamaño (SD, Compact Flash I & II, Smart Card, MMC, etc).
Generalidades Computadora: aparato electrónico capaz de interpretar y ejecutar comandos programados para operaciones de entrada, salida, cálculo y lógica. Las computadoras:
Reciben entradas. La entrada son los datos que se capturan en un sistema de computación para su procesamiento.
Producen salidas. La salida es la presentación de los resultados del procesamiento.
Procesan información
Almacenan información
Todo sistema de cómputo tiene componentes de hardware dedicados a estas funciones:
Dispositivos de entrada
Dispositivos de salida
Unidad central de procesamiento. Es la computadora real, la "inteligencia" de un sistema de computación.
Memoria y dispositivos de almacenamiento.
Cada dispositivo de entrada es sólo otra fuente de señales eléctricas; cada dispositivo de salida no es más que otro lugar al cual enviar señales; cada dispositivo de almacenamiento es lo uno o lo otro, dependiendo de lo que requiera el programa; no importa cuáles sean los dispositivos de entrada y salida si son compatibles. Los elementos fundamentales que justifican el uso de las computadoras, radican en que las computadoras son:
Útiles.
Baratas: tanto con respecto a sí mismas como con respecto al costo de la mano de obra.
Fáciles de utilizar.
Tecnologías y avances:
1ª generación: Con tubos de vacío, tubos de vidrio del tamaño de una bombilla que albergaban circuitos eléctricos.que permitió empaquetar cientos de transistores en un circuito integrado de un chip de silicio.
4ª generación: con el microprocesador, que es un computador completo empaquetado en un solo chip de silicio.
[editar]

Estudio del hardware
El estudio y diseño del hardware son un campo de estudio de la ingeniería electrónica, el campo de la electrónica abarca el análisis y diseño de sistemas digitales y analógicos.Uno de los sitemas digitales más conocido es el microprocesador. La electrónica se encarga del diseño de estos sistemas digitales tan complejos que es donde realmente se realiza la computación. La ingeniería electrónica abarca muchos campos de estudio como ser en el campo del control, la robótica industrial y microbotica, tratamiento de señales digitalmente, las telecomunicaciones, análisis y diseño de redes de computadoras, control moderno, la teoría de control, diseño e implementación de programas ensambladores con dispositivos electrónicos digitales, el diseño de sistemas computacionales, etc.
En el diseño de computadores la electrónica se encarga del control de los dispositivos periféricos, el diseño del programa ensamblador para los microprocesadores, ya que esta ciencia es realmente la que crea los programas ensambladores que residen en la CPU en formas de instrucciones, y que no se podría llevar a cabo muchas funciones importantes que tienen las computadoras. En la programación de dispositivos hardware la electrónica que tiene un campo muy aceptado en el diseño de computadores y por medio del cual se lleva a cabo la lógica de movimiento de la información. Es tal vez, por lo mencionado arriba, la razón que supuestamente las ciencias de la computación esta relacionada con el hardware inclusive quedando un espacio muy grande entre estas dos ciencias.''
Hardware
La parte "que se puede tocar" de un ordenador: caja (y todo su contenido), teclado, pantalla, etc.
Hardware
El parte físico de un ordenador como processor, dico-duro etc..

Thursday, September 28, 2006

Dispositivos de Almacenamiento


Debido a la cantidad de información que manejamos actualmente, los dispositivos de almacenamiento se han vuelto casi tan importantes como el mismísimo computador.

Aunque actualmente existen dispositivos para almacenar que superan las 650 MB de memoria, aún seguimos quejándonos por la falta de capacidad para transportar nuestros documentos y para hacer Backups de nuestra información más importante. Todo esto sucede debido al aumento de software utilitario que nos permite, por dar un pequeño ejemplo, convertir nuestros Cds en archivos de Mp3.

El espacio en nuestro Disco duro ya no es suficiente para guardar tal cantidad de información; por lo que se nos es de urgencia conseguir un medo alternativo de almacenamiento para guardar nuestros Cds en Mp3 o los programas que desacargamos de Internet.

La tecnología óptica

la tecnología óptica de almacenamiento por láser es bastante más reciente. Su primera aplicación comercial masiva fue el superexitoso CD de música, que data de comienzos de la década de 1.980. Los fundamentos técnicos que se utilizan son relativamente sencillos de entender: un haz láser va leyendo (o escribiendo) microscópicos agujeros en la superficie de un disco de material plástico, recubiertos a su vez por una capa transparente para su protección del polvo.

Realmente, el método es muy similar al usado en los antiguos discos de vinilo, excepto porque la información está guardada en formato digital (unos y ceros como valles y cumbres en la superficie del CD) en vez de analógico y por usar un láser como lector. El sistema no ha experimentado variaciones importantes hasta la aparición del DVD, que tan sólo ha cambiado la longitud de onda del láser, reducido el tamaño de los agujeros y apretado los surcos para que quepa más información en el mismo espacio.

Disco de vídeo digital

Disco de vídeo digital, también conocido en la actualidad como disco versátil digital (DVD), un dispositivo de almacenamiento masivo de datos cuyo aspecto es idéntico al de un disco compacto, aunque contiene hasta 25 veces más información y puede transmitirla al ordenador o computadora unas 20 veces más rápido que un CD-ROM. Su mayor capacidad de almacenamiento se debe, entre otras cosas, a que puede utilizar ambas caras del disco y, en algunos casos, hasta dos capas por cada cara, mientras que el CD sólo utiliza una cara y una capa. Las unidades lectoras de DVD permiten leer la mayoría de los CDs, ya que ambos son discos ópticos; no obstante, los lectores de CD no permiten leer DVDs.

En un principio se utilizaban para reproducir películas, de ahí su denominación original de disco de vídeo digital. Hoy, los DVD-Vídeo son sólo un tipo de DVD que almacenan hasta 133 minutos de película por cada cara, con una calidad de vídeo LaserDisc y que soportan sonido digital Dolby surround; son la base de las instalaciones de cine en casa que existen desde 1996. Además de éstos, hay formatos específicos para la computadora que almacenan datos y material interactivo en forma de texto, audio o vídeo, como los DVD-R, unidades en las que se puede grabar la información una vez y leerla muchas, DVD-RW, en los que la información se puede grabar y borrar muchas veces, y los DVD-RAM, también de lectura y escritura.

En 1999 aparecieron los DVD-Audio, que emplean un formato de almacenamiento de sonido digital de segunda generación con el que se pueden recoger zonas del espectro sonoro que eran inaccesibles al CD-Audio.

Todos los discos DVD tienen la misma forma física y el mismo tamaño, pero difieren en el formato de almacenamiento de los datos y, en consecuencia, en su capacidad. Así, los DVD-Vídeo de una cara y una capa almacenan 4,7 GB, y los DVD-ROM de dos caras y dos capas almacenan hasta 17 GB. Del mismo modo, no todos los DVDs se pueden reproducir en cualquier unidad lectora; por ejemplo, un DVD-ROM no se puede leer en un DVD-Vídeo, aunque sí a la inversa.

Por su parte, los lectores de disco compacto, CD, y las unidades de DVD, disponen de un láser, ya que la lectura de la información se hace por procedimientos ópticos. En algunos casos, estas unidades son de sólo lectura y en otros, de lectura y escritura.

Tipos de discos compactos

SOPORTE

CAPACIDAD DE ALMACENAMIENTO

DURACIÓN MÁXIMA DE AUDIO

DURACIÓN MÁXIMA DE VÍDEO

NÚMERO DE CDs A LOS QUE EQUIVALE






Disco compacto (CD)

650 Mb

1 h 18 min.

15 min.

1

DVD una cara / una capa

4,7 Gb

9 h 30 min.

2 h 15 min.

7

DVD una cara / doble capa

8,5 Gb

17 h 30 min.

4 h

13

DVD doble cara / una capa

9,4 Gb

19 h

4 h 30 min.

14

DVD doble cara / doble capa

17 Gb

35 h

8 h

26

Disco duro

Disco duro, en los ordenadores o computadoras, unidad de almacenamiento permanente de gran capacidad. Está formado por varios discos apilados —dos o más—, normalmente de aluminio o vidrio, recubiertos de un material ferromagnético. Como en los disquetes, una cabeza de lectura/escritura permite grabar la información, modificando las propiedades magnéticas del material de la superficie, y leerla posteriormente (La tecnología magnética, consiste en la aplicación de campos magnéticos a ciertos materiales cuyas partículas reaccionan a esa influencia, generalmente orientándose en unas determinadas posiciones que conservan tras dejar de aplicarse el campo magnético. Esas posiciones representan los datos, bien sean una canción, bien los bits que forman una imagen o un documento importante.); esta operación se puede hacer un gran número de veces.

La mayor parte de los discos duros son fijos, es decir, están alojados en el ordenador de forma permanente. Existen también discos duros removibles, como los discos Jaz de Iomega, que se utilizan generalmente para hacer backup —copias de seguridad de los discos duros— o para transferir grandes cantidades de información de un ordenador a otro.

El primer disco duro se instaló en un ordenador personal en 1979; era un Seagate con una capacidad de almacenamiento de 5 MB. Hoy día, la capacidad de almacenamiento de un disco duro puede superar los 50 MB. A la vez que aumentaba la capacidad de almacenamiento, los discos duros reducían su tamaño; así se pasó de las 12 pulgadas de diámetro de los primeros, a las 3,5 pulgadas de los discos duros de los ordenadores portátiles o las 2,5 pulgadas de los discos de los notebooks (ordenadores de mano).

Modernamente, sólo se usan en el mundo del PC dos tipos de disco duro: el IDE y el SCSI (leído "escasi"). La diferencia entre estos Discos duros radica en la manera de conectarlos a la MainBoard.

IDE

Los discos IDE son los más habituales; ofrecen un rendimiento razonablemente elevado a un precio económico y son más o menos fáciles de instalar. Sin embargo, se ven limitados a un número máximo de 4 dispositivos (y esto con las controladoras EIDE, las IDE originales sólo pueden manejar 2).

Su conexión se realiza mediante un cable plano con conectores con 40 pines colocados en dos hileras (aparte del cable de alimentación, que es común para todos los tipos de disco duro). Así pues, para identificar correctamente un disco IDE basta con observar la presencia de este conector, aunque para estar seguros al 100% deberemos buscar unos microinterruptores ("jumpers") que, en número de 2 a 4, permiten elegir el orden de los dispositivos (es decir, si se comportan como "Maestro" o como "Esclavo").

SCSI

Esta tecnología es mucho menos utilizada, pero no por ser mala, sino por ser relativamente cara. Estos discos suelen ser más rápidos a la hora de transmitir datos, a la vez que usan menos al procesador para hacerlo, lo que se traduce en un aumento de prestaciones. Es típica y casi exclusiva de ordenadores caros, servidores de red y muchos Apple Macintosh.

Los conectores SCSI son múltiples, como lo son las variantes de la norma: SCSI-1, SCSI-2, Wide SCSI, Ultra SCSI... Pueden ser planos de 50 contactos en 2 hileras, o de 68 contactos, o no planos con conector de 36 contactos, con mini-conector de 50 contactos...

Una pista para identificarlos puede ser que, en una cadena de dispositivos SCSI (hasta 7 ó 15 dispositivos que van intercalados a lo largo de un cable o cables, como las bombillas de un árbol de Navidad), cada aparato tiene un número que lo identifica, que en general se puede seleccionar. Para ello habrá una hilera de jumpers, o bien una rueda giratoria, que es lo que deberemos buscar.

MFM, ESDI

Muy similares, especialmente por el hecho de que están descatalogados. Su velocidad resulta insufrible, más parecida a la de un disquete que a la de un disco duro moderno. Se trata de cacharros pesados, de formato casi siempre 5,25 pulgadas, con capacidades de 10, 20, 40 o hasta 80 megas máximo.

Dispositivos Periféricos.

Jaz (Iomega) - 1 GB ó 2 GB

  • Pros: capacidad muy elevada, velocidad, portabilidad
  • Contras: inversión inicial, no tan resistente como un magneto-óptico, cartuchos relativamente caros

Las cifras de velocidad del Jaz son absolutamente alucinantes, casi indistinguibles de las de un disco duro moderno: poco más de 5 MB/s y menos de 15 ms. La razón de esto es fácil de explicar: cada cartucho Jaz es internamente, a casi todos los efectos, un disco duro al que sólo le falta el elemento lector-grabador, que se encuentra en la unidad.

Por ello, atesora las ventajas de los discos duros: gran capacidad a bajo precio y velocidad, junto con sus inconvenientes: información sensible a campos magnéticos, durabilidad limitada en el tiempo, relativa fragilidad. De cualquier forma, y sin llegar a la extrema resistencia de los discos Zip, podemos calificar este soporte de duro y fiable, aunque la información nunca estará tan a salvo como si estuviera guardada en un soporte óptico o magneto-óptico.

Aplicaciones

Almacenamiento masivo de datos que deben guardarse y recuperarse con la mayor velocidad posible, lo cual lo hace ideal para la edición de vídeo digital (casi una hora en formato MPEG); en general, sirve para lo mismo que los discos duros, pero con la ventaja de su portabilidad y fácil almacenaje.

En cuanto a defectos y críticas, aparte de que los datos no duren "para siempre", sólo tiene un inconveniente: el precio. La unidad lectora-grabadora de 1 GB vale una respetable cantidad de dinero, unos $650.000, y los discos unos $180.000 c/u.

Zip (Iomega) - 100 MB

Pros: portabilidad, reducido formato, precio global, muy extendido

Contras: capacidad reducida, incompatible con disquetes de 3,5"

Las unidades Zip se caracterizan externamente por ser de un color azul oscuro, al igual que los disquetes habituales (los hay de todos los colores). Estos discos son dispositivos magnéticos un poco mayores que los clásicos disquetes de 3,5 pulgadas, aunque mucho más robustos y fiables, con una capacidad sin compresión de 100 MB una vez formateados.

Su capacidad los hace inapropiados para hacer copias de seguridad del disco duro completo, aunque perfectos para archivar todos los archivos referentes a un mismo tema o proyecto en un único disco. Su velocidad de transferencia de datos no resulta comparable a la de un disco duro actual, aunque son decenas de veces más rápidos que una disquetera tradicional (alrededor de 1 MB/s).

Existen en diversos formatos, tanto internos como externos. Los internos pueden tener interfaz IDE, como la de un disco duro o CD-ROM, o bien SCSI; ambas son bastante rápidas, la SCSI un poco más, aunque su precio es también superior.

Las versiones externas aparecen con interfaz SCSI (con un rendimiento idéntico a la versión interna) o bien conectable al puerto paralelo, sin tener que prescindir de la impresora conectada a éste. El modelo para puerto paralelo pone el acento en la portabilidad absoluta entre ordenadores (Sólo se necesita que tengan el puerto Lpt1) aunque su velocidad es la más reducida de las tres versiones. Muy resistente, puede ser el acompañante ideal de un portátil.

Ha tenido gran aceptación, siendo el estándar en su segmento, pese a no poder prescindir de la disquetera de 3,5" con la que no son en absoluto compatibles, aunque sus ventajas puede que suplan este inconveniente. El precio de la versión interna ronda los $262.500 (más IVA) y los Discos alrededor de $35.000 (más IVA).

Muchas de las primeras unidades Zip sufrían el denominado "mal del click", que consistía en un defecto en la unidad lectora-grabadora que, tras hacer unos ruiditos o "clicks", destrozaba el disco introducido; afortunadamente, este defecto está corregido en las unidades actuales. En todo caso, los discos son bastante resistentes, pero evidentemente no llegan a durar lo que un CD-ROM.

http://www.monografias.com/trabajos12/dispalm/dispalm.shtml



Dispositivo de almacenamiento
es todo aparato que se utilice para grabar los datos de la computadora de forma permanente o temporal. Una unidad de disco, junto con los discos que graba, es un dispositivo de almacenamiento. A veces se dice que una computadora tiene dispositivos de almacenamiento primarios (o principales) y secundarios (o auxiliares). Cuando se hace esta distinción, el dispositivo de almacenamiento primario es la memoria de acceso aleatorio (RAM) de la computadora, un dispositivo de almacenamiento permanente pero cuyo contenido es temporal. El almacenamiento secundario incluye los dispositivos de almacenamiento más permanentes, como unidades de disco y de cinta.

La velocidad de un dispositivo se mide por varios parámetros: la velocidad máxima que es capaz de soportar, que suele ser relativa, en un breve espacio de tiempo y en las mejores condiciones; la velocidad media, que es la que puede mantener de forma constante en un cierto período de tiempo, y, por último, el tiempo medio de acceso que tarda el dispositivo en responder a una petición de información debido a que debe empezar a mover sus piezas, a girar y buscar el dato solicitado. Este tiempo se mide en milisegundos (ms), y cuanto menor sea esta cifra más rápido será el acceso a los datos.

Unidades de información

Bit (Binary Digit o dígito binario): Adquiere el valor 1 ó 0 en el sistema numérico binario. En el procesamiento y almacenamiento informático un bit es la unidad de información más pequeña manipulada por el ordenador y está representada físicamente por un elemento como un único pulso enviado a través de un circuito, o bien como un pequeño punto en un disco magnético capaz de almacenar un 0 o un 1. La representación de información se logra mediante la agrupación de bits para lograr un conjunto de valores mayor que permite manejar mayor información. Por ejemplo, la agrupación de ocho bits componen un byte que se utiliza para representar todo tipo de información, incluyendo las letras del alfabeto y los dígitos del 0 al 9.

Código ASCII (American Standard Code for Information Interchange o Código Estándar Americano para el Intercambio de Información): Esquema de codificación que asigna valores numéricos a las letras, números, signos de puntuación y algunos otros caracteres. Al normalizar los valores utilizados para dichos caracteres, ASCII permite que los ordenadores o computadoras y programas informáticos intercambien información.

ASCII incluye 256 códigos divididos en dos conjuntos, estándar y extendido, de 128 cada uno. Estos conjuntos representan todas las combinaciones posibles de 7 u 8 bits, siendo esta última el número de bits en un byte. El conjunto ASCII básico, o estándar, utiliza 7 bits para cada código, lo que da como resultado 128 códigos de caracteres desde 0 hasta 127 (00H hasta 7FH hexadecimal). El conjunto ASCII extendido utiliza 8 bits para cada código, dando como resultado 128 códigos adicionales, numerados desde el 128 hasta el 255 (80H hasta FFH extendido).

En el conjunto de caracteres ASCII básico, los primeros 32 valores están asignados a los códigos de control de comunicaciones y de impresora —caracteres no imprimibles, como retroceso, retorno de carro y tabulación— empleados para controlar la forma en que la información es transferida desde una computadora a otra o desde una computadora a una impresora. Los 96 códigos restantes se asignan a los signos de puntuación corrientes, a los dígitos del 0 al 9 y a las letras mayúsculas y minúsculas del alfabeto latino.

Los códigos de ASCII extendido, del 128 al 255, se asignan a conjuntos de caracteres que varían según los fabricantes de computadoras y programadores de software. Estos códigos no son intercambiables entre los diferentes programas y computadoras como los caracteres ASCII estándar. Por ejemplo, IBM utiliza un grupo de caracteres ASCII extendido que suele denominarse conjunto de caracteres IBM extendido para sus computadoras personales. Apple Computer utiliza un grupo similar, aunque diferente, de caracteres ASCII extendido para su línea de computadoras Macintosh. Por ello, mientras que el conjunto de caracteres ASCII estándar es universal en el hardware y el software de los microordenadores, los caracteres ASCII extendido pueden interpretarse correctamente sólo si un programa, computadora o impresora han sido diseñados para ello.

Sistema binario

El sistema binario desempeña un importante papel en la tecnología de los ordenadores. Los primeros 20 números en el sistema en base 2 son 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 10000, 10001, 10010, 10011 y 10100. Cualquier número se puede representar en el sistema binario, como suma de varias potencias de dos.

Las operaciones aritméticas con números en base 2 son muy sencillas. Las reglas básicas son: 1 + 1 = 10 y 1 × 1 = 1. El cero cumple las mismas propiedades que en el sistema decimal: 1 × 0 = 0 y 1 + 0 = 1. La adición, sustracción y multiplicación se realizan de manera similar a las del sistema decimal:

Puesto que sólo se necesitan dos dígitos (o bits), el sistema binario se utiliza en los ordenadores o computadoras. Un número binario cualquiera se puede representar, por ejemplo, con las distintas posiciones de una serie de interruptores. La posición "encendido" corresponde al 1, y "apagado" al 0. Además de interruptores, también se pueden utilizar puntos imantados en una cinta magnética o disco: un punto imantado representa al dígito 1, y la ausencia de un punto imantado es el dígito 0. Los biestables —dispositivos electrónicos con sólo dos posibles valores de voltaje a la salida y que pueden saltar de un estado al otro mediante una señal externa— también se pueden utilizar para representar números binarios. Los circuitos lógicos realizan operaciones con números en base 2. La conversión de números decimales a binarios para hacer cálculos, y de números binarios a decimales para su presentación, se realizan electrónicamente.

Medidas de almacenamiento de la información

Byte: unidad de información que consta de 8 bits; en procesamiento informático y almacenamiento, el equivalente a un único carácter, como puede ser una letra, un número o un signo de puntuación.

Kilobyte (Kb): Equivale a 1.024 bytes.

Megabyte (Mb): Un millón de bytes o 1.048.576 bytes.

Gigabyte (Gb): Equivale a mil millones de bytes.

En informática, cada letra, número o signo de puntuación ocupa un byte (8 bits). Por ejemplo, cuando se dice que un archivo de texto ocupa 5.000 bytes estamos afirmando que éste equivale a 5.000 letras o caracteres. Ya que el byte es una unidad de información muy pequeña, se suelen utilizar sus múltiplos: kilobyte (Kb), megabyte (MB), gigabyte (GB)... Como en informática se utilizan potencias de 2 en vez de potencias de 10, se da la circunstancia de que cada uno de estos múltiplos no es 1.000 veces mayor que el anterior, sino 1.024 (210 = 1.024). Por lo que 1 GB = 1.024 MB = 1.048.576 Kb = más de 1.073 millones de bytes.

Los sistemas de archivo

Todo dispositivo que almacene datos ha de ser formateado antes de poder utilizarlo; es decir, hemos de darle la forma para que reconozca cómo ha de almacenar la información. Esta operación la realiza un programa como el FORMAT (formatear) que lo que hace es darle la forma de sectores y pistas para que un sistema operativo concreto reconozca ese espacio y a la vez destruye toda la información que contenga el citado dispositivo.

Cuando guardamos un archivo, instalamos un programa, etc., el ordenador almacena la información en el disco duro en pequeñas áreas llamadas clústeres. Cuanto menor sea el tamaño del clúster que utilicemos más eficazmente se almacenará la información en el disco. El tamaño del clúster depende del tamaño de la partición (cada una de las divisiones lógicas de un disco, que se asemejan a discos duros separados) y el tamaño de la partición depende del sistema de archivos que utilice. Generalmente, la mayoría de los equipos utilizan una sola partición.

Las versiones anteriores de MS-DOS y Windows utilizan exclusivamente el sistema de archivos FAT16, cuestión por la que no podíamos utilizar nombres de archivos que superasen los ocho caracteres. Pero Windows 98 y la última revisión de Windows 95 vienen con FAT32, sistema de archivos ampliado que mejora el rendimiento del disco y aumenta el espacio de éste, es de 32 bits y permite usar nombres de archivos y carpetas largos (de hasta 255 letras).

El sistema de archivos FAT32 presenta las siguientes ventajas con respecto a FAT16:

  • Permite que los programas se abran más rápidamente, cerca de un 36% más rápido.

  • Utiliza un tamaño de clúster menor, lo que da como resultado un uso más eficaz del espacio del disco, cerca de un 28% más de espacio en disco.

Si un disco duro tiene menos de 2 Gb y utilizamos el sistema de archivos FAT16 y cambiamos a FAT32 no notaremos gran mejoría, pero si nuestro disco duro es mayor de 2 Gb sí notaremos su eficacia y nos ahorraremos tener que crear varias particiones.

Tipos de disco

DisqueteraUnidad de disco: dispositivo electromecánico que lee y/o escribe en discos. Los principales componentes de una unidad de disco incluyen un eje sobre el que va montado el disco, un motor que lo hace girar cuando la unidad está en funcionamiento, uno o más cabezales de lectura/escritura, un segundo motor que sitúa dichos cabezales sobre el disco, y un circuito controlador que sincroniza las actividades de lectura/escritura y transmite la información hacia y desde el ordenador o computadora. Los tipos de unidad de disco más comunes son las disqueteras, o unidades de discos flexibles, los discos duros y los lectores de disco compacto.

Disco compacto o CD, sistema de almacenamiento de información en el que la superficie del disco está recubierta de un material que refleja la luz. La grabación de los datos se realiza creando agujeros microscópicos que dispersan la luz (pits) alternándolos con zonas que sí la reflejan (lands). Se utiliza un rayo láser y un fotodiodo para leer esta información. Su capacidad de almacenamiento es de unos 650 Mb de información (equivalente a unos 74 minutos de sonido grabado).

CD-ROMCD-ROM (Compact Disc-Read Only Memory): Estándar de almacenamiento de archivos informáticos en disco compacto. Se caracteriza por ser de sólo lectura. Otros estándares son el CD-R o WORM (permite grabar la información una sola vez), el CD-DA (permite reproducir sonido), el CD-I (define una plataforma multimedia) y el PhotoCD (permite visualizar imágenes estáticas).

Disco: Pieza redonda y plana de plástico flexible (disquete) o de metal rígido (disco duro) revestida con un material magnético que puede ser influido eléctricamente para contener información grabada en forma digital (binaria). En el caso de un disquete, la cabeza de lectura y escritura roza la superficie del disco, mientras que en un disco duro las cabezas nunca llegan a tocar la superficie.

Hasta hace poco los disquetes eran flexibles y algo grandes, 5,25 pulgadas de ancho y con capacidad de 360 Kb, lo que hizo que desaparecieran rápidamente. En la actualidad son más pequeños (3,5 pulgadas), algo más rígidos y con capacidad de 1,44 Mb. Aunque son unos dispositivos poco fiables, ya que les afecta la temperatura, el polvo, los golpes y los campos magnéticos, se siguen utilizando en nuestros días, y aunque su capacidad se haya quedado totalmente obsoleta seguirán sobreviviendo por bastante tiempo.

En el caso del disco compacto la superficie del disco es un material que refleja la luz. La grabación de los datos se realiza creando agujeros microscópicos que dispersan la luz (pits) alternándolos con zonas que sí la reflejan (lands). Se utiliza un rayo láser y un fotodiodo para leer esta información.

Disco duroDisco duro: Es un dispositivo compuesto por una o varias láminas rígidas de forma circular, recubiertas de un material que posibilita la grabación magnética de datos. Un disco duro normal gira a una velocidad de 3.600 revoluciones por minuto y las cabezas de lectura y escritura se mueven en la superficie del disco sobre una burbuja de aire de una profundidad de 10 a 25 millonésimas de pulgada. El disco duro va sellado para evitar la interferencia de partículas en la mínima distancia que existe entre las cabezas y el disco. Los discos duros proporcionan un acceso más rápido a los datos que los discos flexibles y pueden almacenar mucha más información. Al ser las láminas rígidas, pueden superponerse unas sobre otras, de modo que una unidad de disco duro puede tener acceso a más de una de ellas. La mayoría de los discos duros tienen de dos a ocho láminas. Actualmente, los tamaños son del orden de varios Gigabytes (de 8 a 30), su tiempo medio de acceso es muy bajo (algo menos de 20 milisegundos) y su velocidad de transferencia es tan alta que deben girar a más de 4.000 rpm.

El interfaz IDE es el más usado en ordenadores normales, debido a su buena relación prestaciones-precio. El estándar IDE fue ampliado por la norma ATA-2 en lo que se ha dado en denominar EIDE (Enhanced IDE o IDE mejorado), que acepta hasta cuatro dispositivos. En cada uno de los canales IDE debe haber un dispositivo maestro (master) y otro esclavo (slave). El maestro es el primero y se le suele asignar la letra C, mientras el esclavo suele ser el D.

Disco duroLos dispositivos IDE o EIDE como discos duros o CD-ROMs disponen de unos microinterruptores (jumpers), situados generalmente en la parte posterior o inferior de los mismos, que permiten seleccionar su carácter de maestro o esclavo. Las posiciones de los jumpers suelen indicarse en una pegatina en el disco, en los manuales o grabadas en la placa de circuito del disco duro, con las letras M (maestro) y S (esclavo).

La velocidad del disco viene dado por su modo de acceso: modo PIO, que se activa mediante la BIOS y modo DMA, cuya ventaja es que libera al micro de gran parte del trabajo en la transferencia de datos y se lo asigna al chipset de la placa.

Los discos duros SCSI (escasi) tienen la ventaja respecto a los IDE no en su mecánica, sino en que la transferencia de datos es más constante e independiente del trabajo del microprocesador, por ello se suelen utilizar en servidores y ordenadores que manejan multimedia y Autocad o al realizar una multitarea de forma intensiva. En resumidas cuentas, suelen ser una buena opción profesional, aunque tienen un alto precio.

http://club.telepolis.com/ortihuela/dispositivos.htm



Dispositivos de almacenamiento

Existen multitud de dispositivos diferentes donde almacenar nuestras copias de seguridad, desde un simple disco flexible hasta unidades de cinta de última generación. Evidentemente, cada uno tiene sus ventajas y sus inconvenientes, pero utilicemos el medio que utilicemos, éste ha de cumplir una norma básica: ha de ser estándar. Con toda probabilidad muchos administradores pueden presumir de poseer los streamers más modernos, con unidades de cinta del tamaño de una cajetilla de tabaco que son capaces de almacenar gigas y más gigas de información; no obstante, utilizar dispositivos de última generación para guardar los backups de nuestros sistemas puede convertirse en un problema: >qué sucede si necesitamos recuperar datos y no disponemos de esa unidad lectora tan avanzada? Imaginemos simplemente que se produce un incendio y desaparece una máquina, y con ella el dispositivo que utilizamos para realizar copias de seguridad. En esta situación, o disponemos de otra unidad idéntica a la perdida, o recuperar nuestra información va a ser algo difícil. Si en lugar de un dispositivo moderno, rápido y seguramente muy fiable, pero incompatible con el resto, hubiéramos utilizado algo más habitual (una cinta de 8mm., un CD-ROM, o incluso un disco duro) no tendríamos problemas en leerlo desde cualquier sistema Unix, sin importar el hardware sobre el que trabaja.

Aquí vamos a comentar algunos de los dispositivos de copia de seguridad más utilizados hoy en día; de todos ellos (o de otros, no listados aquí) cada administrador ha de elegir el que más se adapte a sus necesidades. En la tabla 7.1 se muestra una comparativa de todos ellos.

Discos flexibles
Sí, aunque los clásicos diskettes cada día se utilicen menos, aún se pueden considerar un dispositivo donde almacenar copias de seguridad. Se trata de un medio muy barato y portable entre diferentes operativos (evidentemente, esta portabilidad existe si utilizamos el disco como un dispositivo secuencial, sin crear sistemas de ficheros). Por contra, su fiabilidad es muy baja: la información almacenada se puede borrar fácilmente si el disco se aproxima a aparatos que emiten cualquier tipo de radiación, como un teléfono móvil o un detector de metales. Además, la capacidad de almacenamiento de los floppies es muy baja, de poco más de 1 MB por unidad; esto hace que sea casi imposible utilizarlos como medio de backup de grandes cantidades de datos, restringiendo su uso a ficheros individuales.

Un diskette puede utilizarse creando en él un sistema de ficheros, montándolo bajo un directorio, y copiando en los archivos a guardar. Por ejemplo, podemos hacer un backup de nuestro fichero de claves en un disco flexible de esta forma.
luisa:~# mkfs -t ext2 /dev/fd0
mke2fs 1.14, 9-Jan-1999 for EXT2 FS 0.5b, 95/08/09
Linux ext2 filesystem format
Filesystem label=
360 inodes, 1440 blocks
72 blocks (5.00%) reserved for the super user
First data block=1
Block size=1024 (log=0)
Fragment size=1024 (log=0)
1 block group
8192 blocks per group, 8192 fragments per group
360 inodes per group

Writing inode tables: done
Writing superblocks and filesystem accounting information: done
luisa:~# mount -t ext2 /dev/fd0 /mnt/
luisa:~# cp /etc/passwd /mnt/
luisa:~# umount /mnt/
luisa:~#
Si quisiéramos recuperar el archivo, no tendríamos más que montar de nuevo el diskette y copiar el fichero en su ubicación original. No obstante, este uso de los discos flexibles es minoritario; es más habitual utilizarlo como un dispositivo secuencial (como una cinta), sin crear en él sistemas de ficheros - que quizás son incompatibles entre diferentes clones de Unix - sino accediendo directamente al dispositivo. Por ejemplo, si de nuevo queremos hacer un backup de nuestro fichero de passwords, pero siguiendo este modelo de trabajo, podemos utilizar la orden tar (comentada más adelante) para conseguirlo:
luisa:~# tar cvf /dev/fd0 /etc/passwd
tar: Removing leading `/' from absolute path names in the archive
etc/passwd
luisa:~#
Para recuperar ahora el archivo guardado, volvemos a utilizar la orden tar indicando como contenedor la unidad de disco correspondiente:
luisa:~# tar xvf /dev/fd0
etc/passwd
luisa:~#
Discos duros
Es posible utilizar una unidad de disco duro completa (o una partición) para realizar copias de seguridad; como sucedía con los discos flexibles, podemos crear un sistema de ficheros sobre la unidad o la partición correspondiente, montarla, y copiar los ficheros que nos interese guardar en ella (o recuperarlos). De la misma forma, también podemos usar la unidad como un dispositivo secuencial y convertirlo en un contenedor tar o cpio; en este caso hemos de estar muy atentos a la hora de especificar la unidad, ya que es muy fácil equivocarse de dispositivo y machacar completamente la información de un disco completo (antes también podía suceder, pero ahora la probabilidad de error es más alta). Por ejemplo, si en lugar del nombre del dispositivo correcto (supongamos /dev/hdc) especificamos otro (como /dev/hdd), estaremos destruyendo la información guardada en este último.

Algo muy interesante en algunas situaciones es utilizar como dispositivo de copia un disco duro idéntico al que está instalado en nuestro sistema, y del que deseamos hacer el backup; en este caso es muy sencillo hacer una copia de seguridad completa. Imaginemos por ejemplo que /dev/hda y /dev/hdc son dos discos exactamente iguales; en este caso, si queremos conseguir una imagen especular del primero sobre el segundo, no tenemos más que utilizar la orden dd con los parámetros adecuados:
luisa:~# dd if=/dev/hda of=/dev/hdc bs=2048
1523+0 records in
1523+0 records out
luisa:~#
Cintas magnéticas
Las cintas magnéticas han sido durante años (y siguen siendo en la actualidad) el dispositivo de backup por excelencia. Las más antiguas, las cintas de nueve pistas, son las que mucha gente imagina al hablar de este medio: un elemento circular con la cinta enrollada en él; este tipo de dispositivos se utilizó durante mucho tiempo, pero en la actualidad está en desuso, ya que a pesar de su alta fiabilidad y su relativa velocidad de trabajo, la capacidad de este medio es muy limitada (de hecho, las más avanzadas son capaces de almacenar menos de 300 MB., algo que no es suficiente en la mayor parte de sistemas actuales).

Después de las cintas de 9 pistas aparecieron las cintas de un cuarto de pulgada (denominadas QIC), mucho más pequeñas en tamaño que las anteriores y con una capacidad máxima de varios Gigabytes (aunque la mayor parte de ellas almacenan menos de un Giga); se trata de cintas más baratas que las de 9 pistas, pero también más lentas. El medio ya no va descubierto, sino que va cubierto de una envoltura de plástico.

A finales de los ochenta aparece un nuevo modelo de cinta que relegó a las cintas QIC a un segundo plano y que se ha convertido en el medio más utilizado en la actualidad: se trata de las cintas de 8mm., diseñadas en su origen para almacenar vídeo. Estas cintas, del tamaño de una cassette de audio, tienen una capacidad de hasta cinco Gigabytes, lo que las hace perfectas para la mayoría de sistemas: como toda la información a salvaguardar cabe en un mismo dispositivo, el operador puede introducir la cinta en la unidad del sistema, ejecutar un sencillo shellscript, y dejar que el backup se realice durante toda la noche; al día siguiente no tiene más que verificar que no ha habido errores, retirar la cinta de la unidad, y etiquetarla correctamente antes de guardarla. De esta forma se consigue que el proceso de copia de seguridad sea sencillo y efectivo.

No obstante, este tipo de cintas tiene un grave inconveniente: como hemos dicho, originalmente estaban diseñadas para almacenar vídeo, y se basan en la misma tecnología para registrar la información. Pero con una importante diferencia ([P+94]): mientras que perder unos bits de la cinta donde hemos grabado los mejores momentos de nuestra última fiesta no tiene mucha importancia, si esos mismos bits los perdemos de una cinta de backup el resto de su contenido puede resultar inservible. Es más, es probable que después de unos cuantos usos (incluidas las lecturas) la cinta se dañe irreversiblemente. Para intentar solucionar estos problemas aparecieron las cintas DAT, de 4mm., diseñadas ya en origen para almacenar datos; estos dispositivos, algo más pequeños que las cintas de 8mm. pero con una capacidad similar, son el mejor sustituto de las cintas antiguas: son mucho más resistentes que éstas, y además relativamente baratas (aunque algo más caras que las de 8mm.).

Hemos dicho que en las cintas de 8mm. (y en las de 4mm.) se pueden almacenar hasta 5 GB. de información. No obstante, algunos fabricantes anuncian capacidades de hasta 14 GB. utilizando compresión hardware, sin dejar muy claro si las cintas utilizadas son estándar o no ([Fri95]); evidentemente, esto puede llevarnos a problemas de los que antes hemos comentado: >qué sucede si necesitamos recuperar datos y no disponemos de la unidad lectora original? Es algo vital que nos aseguremos la capacidad de una fácil recuperación en caso de pérdida de nuestros datos (este es el objetivo de los backups al fin y al cabo), por lo que quizás no es conveniente utilizar esta compresión hardware a no ser que sea estrictamente necesario y no hayamos podido aplicar otra solución.

CD-ROMs
En la actualidad sólo se utilizan cintas magnéticas en equipos antiguos o a la hora de almacenar grandes cantidades de datos - del orden de Gigabytes. Hoy en día, muchas máquinas Unix poseen unidades grabadoras de CD-ROM, un hardware barato y, lo que es más importante, que utiliza dispositivos de muy bajo coste y con una capacidad de almacenamiento suficiente para muchos sistemas: con una unidad grabadora, podemos almacenar más de 650 Megabytes en un CD-ROM que cuesta menos de 150 pesetas. Por estos motivos, muchos administradores se decantan por realizar sus copias de seguridad en uno o varios CD-ROMs; esto es especialmente habitual en estaciones de trabajo o en PCs de sobremesa corriendo algún clon de Unix (Linux, Solaris o FreeBSD por regla general), donde la cantidad de datos a salvaguardar no es muy elevada y se ajusta a un par de unidades de CD, cuando no a una sola.

En el punto 7.3.4 se comenta el mecanismo para poder grabar en un CD-ROM; aunque los ejemplos que comentaremos son básicos, existen multitud de posibilidades para trabajar con este medio. Por ejemplo, podemos utilizar dispositivos CD-RW, similares a los anteriores pero que permiten borrar la información almacenada y volver a utilizar el dispositivo (algo muy útil en situaciones donde reutilizamos uno o varios juegos de copias), o utilizar medios con una mayor capacidad de almacenamiento (CD-ROMs de 80 minutos, capaces de almacenar hasta 700 MB.); también es muy útil lo que se conoce como la grabación multisesión, algo que nos va a permitir ir actualizando nuestras copias de seguridad con nuevos archivos sin perder la información que habíamos guardado previamente.

Tabla 7.1: Comparación de diferentes medios de almacenamiento secundario.
Dispositivo Fiabilidad Capacidad Coste/MB
Diskette Baja Baja Alto
CD-ROM Media Media Bajo
Disco duro Alta Media/Alta Medio.
Cinta 8mm. Media Alta Medio.
Cinta DAT Alta Alta Medio.


http://es.tldp.org/Manuales-LuCAS/doc-unixsec/unixsec-html/node102.html

HISTORIA DE LA EVOLUCIÓN DE LOS PROCESADORES

PROCESADOR VELOCIDAD TRANSISTORES RENDIMIENTO Mips(*) BUS INT/EXT Bit/Mhz FECHA APARICIÓN
4004 108 Khz 2.300 0.06 / 15.11.71
8008 200 Khz 3.500 0.06 / 04.1972
8080 2 Mhz 6.000 0.64 / 04.1974
8085 5 Mhz 6.500 0.37 16 / 8 03.1976

8086 (1)

5 8

10 Mhz

29.000 0.33

0.66

0.75

16 / 8 08.06.78
8088 (1) 5

8 Mhz

29.000 0.33

0.75

16 / 8 06.1979
80286 (1), (2) 6

10

12 Mhz

134.000 0.9

1.5

2.66

16 / 16 02.1982
80386 DX (3) 16

20

25

33 Mhz

275.000 5.5

6.5

8.5 / 49

11.4 / 68

32 / 16 17.10.85

06.02.87

04.04.88

10.04.88

80386 SX 16

20

25

33 Mhz

275.000 2.5 / 22

2.5 / 32

2.7 / 39

2.9 / 136

32 / 16 16.06.88

25.02.89

16.06.88

26.10.92

80386 SL 20

25 Mhz

855.000 4.21

5.3 / 41

32 / 16 15.10.89

30.09.91

80486 DX (3) 25

33

50 Mhz

1.200.000 20 / 122

27 / 166

41 / 249

32 / 32 10.04.89

07.07.90

24.06.91

80486 SX 16

20

25

33 Mhz

1.185.000 13 / 63

16.5 / 78

20 / 100

27 / 136

32 / 32 16.09.91

22.04.91

16.06.91

80486 SL 20

25

33 Mhz

1.400.000 15.4

19

25

32 / 32 09.11.92
80486 SX2 50 - 180 - -
80486 DX2 (3) 50

66 Mhz

1.200.000 41 / 231

54 / 297

33 /40 / 32 03.03.92

10.08.92

80486 DX4 (3), (4) 75

100 Mhz

1.600.000 53 / 319

70.7 / 435

33 / 40/ 50 / 32 07.03.94
PENTIUM (5) 60

66

75

90

100

120

133

150

166

200 Mhz

3.100.000

3.100.000

3.200.000

3.200.000

3.200.000

3.200.000

3.200.000

3.200.000

3.200.000

3.300.000

100 / 510

112 / 567

126.5 / 610 / 67

149.8 / 735 / 81

166.3 / 815 / 90

203 / 1000 / 100

218.9/ 1110 / 111

1176 / 114

1308 / 127

142

50 / 66 / 32 22.03.93

22.03.93

10.10.94

07.03.94

07.03.94

27.03.95

06.95

04.01.96

04.01.96

10.06.96

AMD K5 75

90

100

120

133

4.300.000

02. 97

02. 97

PENTIUM PRO 150

166

180

200

5.500.000

197

66 / 32 01.11.95
PENTIUM MMX 150

166

180

200

233

4.500.000 144

180

-

182

32/50

32/66

08.02.97
AMD K-6 (6) 200

233

266

300

- -

32/66

-
AMD K-6 2 3D NOW (7) 300

333

350

380

400

450

475

500

533

550

9.000.000 -

32/66

32/100

12.99

05. 00

05.00

PENTIUM II 233

266

300

333

350

400

450

7.500.000 - 32/66

32/100

-
CELERON 266

300

333

300 A

333

366

400

433

466

500

566

600

633

- - 32/66

06. 00

06.00

06. 00

PENTIUM XEON 400 - - 32/100 03.99
PENTIUM III 450

500

550

600

650

700

750

800

850

900

950

1000

9.500.000 - 32 /100 28.02.99

28.02.99

20.12.99

20.03. 00

03. 00

03. 00

08.03.00

AMD K-6 3 3D NOW 400

450

21.300.000 - 32 /100 -
PENTIUM III COPERMINE

533

600

667

733

800

866

933

950

1000

- - 32/133

20.03.00

03.00

03. 00

03. 00

AMD ATHLON 450

500

550

600

650

700

750

800

850

900

950

1000

- - 32 /100

06.01.00

11.02.00

06.03.00

06.03.00

06.03.00